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1. Setup

Throughout this paper G is a reductive Lie group over C with Lie algebra g.
The main object of our studies is a Kac–Moody algebra ĝκ, which as a vector space is

isomorphic to ĝκ = g((t)) ⊕ C · 1, while the Lie bracket is given by [fc, f ′c′] = ff ′[c, c′] +
Rest=0(f ′df)κ(c, c′)·1 with c, c′ ∈ g, f, f ′ ∈ C((t)). We will also need it’s polynomial subalgebra
g̃κ which as a vector space is g̃κ = g[t, t−1]⊕C · 1. Finally, we will also use subalgebra ĝ+

κ ⊂ ĝκ

defined by ĝ+
κ = g[[t]]⊕ C · 1. Note that ĝ+

κ is a trivial central extension of g[[t]].
In what follows Λ is a lattice of integral weights of g, Λ+ ⊂ Λ is a subset of dominant integral

weights, κ is a non-degenerate invariant bilinear form on g. For each λ ∈ Λ, Vλ will denote the
irreducible g-module of highest weight λ. Finally we will need the critical level form on gi equal
to κcrit,i = −1/2 · κKill,i, with κKill,i being a Killing form on gi.

Remark 1. This slightly differs from Kazhdan’s talk and [3], where g was assumed to be simple.
However, writing down any reductive Lie algebra g as g = g0 ⊕

⊕
i=1,...,l

gi with abelian g0 and

each other gi being a simple Lie algebra we, in fact, have a decomposition of κ as well, i.e. we
can write κ = ⊕κi (as κ|gi×gj

= 0 for i 6= j).

Definition 1. Representation ρ of ĝκ is called of level κ if ρ(1) = Id.

Let us recall the basic definition of a smooth representation:

Definition 2. A level κ representation ρ : ĝκ → End(V ) is called smooth if for any v ∈ V there
is N = N(v), s.t. tng · v = 0 for any n > N . We denote the category of smooth ĝκ-modules by
ĝκ −mod. For any representation V we define its smooth part by Vsm.

We assume the notion of the scheme G[[t]] is familiar to a reader (e.g. see [2], section 2.4).
We define the category KLκ (of Kazhdan-Lusztig modules) as following:

Definition 3. KLκ is the category of modules for a Harish-Chandra pair (G[[t]], ĝκ −mod).

Unwinding this definition we see that KLκ is a full abelian subcategory of ĝκ − mod, s.t.
V ∈ KLκ iff tg[[t]] acts locally nilpotently and the action of g integrates to G.

Following notations from [3] and Kazdan’s talk we define:

Definition 4. i) A linear span of g1 · . . . ·gN with gi ∈ tg[t] is denoted by QN ⊂ U(g̃κ) ⊂ U(ĝκ);
ii) For any g̃κ-module/ ĝκ-module V we define V (N) := {v ∈ V |QN · v = 0};
iii) For any g̃κ-module/ ĝκ-module V we define Vint :=

⋃
N V (N);

iv) A g̃κ-module/ ĝκ-module V is called integrable if V = Vint.

Remark 2. a) Our definition of QN (and hence V (N)) slightly differs from the one adopted
in [3], where it is defined as a span of g1 · . . . · gN with gi ∈ tg. However, in the case of a
semi-simple g it is easy to see that V (N) remain the same in both cases.

b) While for a semi-simple g any integrable module is smooth, it’s false for a reductive g.

Assumption 1. In what follows we always assume κ− κcrit is non-degenerate.
1
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By this we mean that κi − κcrit,i are non-degenerate bilinear forms on gi (0 ≤ i ≤ l).
The importance of this assumption is motivated by the Sugawara Construction. It has been

mentioned last time and will be elaborated more in Andrei’s talk. The only thing we will need
today is the existence of the pairwise commuting operators {L(i)

0 }0≤i≤l satisfying the property
[L(i)

0 , tkc] = ktkc for any k ∈ Z, c ∈ gi and [L(i)
0 , tkgj ] = 0 (i 6= j).1 Each operator L

(i)
0 is given

by the formula L
(i)
0 =

∑
j>0

∑
p (t−jc

(i)
p )(tjc(i)

p ) +
∑

p c
(i)
p c

(i)
p with c

(i)
p being an orthonormal

basis of gi with respect to the bilinear form −2(κi − κcrit,i) (it is easy to see that it doesn’t
depend on the choice of the basis c

(i)
p ) 2. Though it is an element of the completion of U(ĝκ)

it’s action on any smooth ĝκ-representation is well-defined.

Remark 3. a) Note that L0 :=
∑

0≤i≤l L
(i)
0 satisfies relations [L0, t

kc] = ktkc, k ∈ Z, c ∈ g as
in the case of a semi-simple g. We adopt this notation in what follows.

b) Peculiarity of an abelian component g0 is that we have an inclusion g0 ⊂ z(g̃). In what
follows this fact plays the same role as operators L

(i)
0 for gi, i 6= 0, while L

(0)
0 turns out to be

pretty useless.

Definition 5. i) Given a finite dimensional G[[t]]-module M we define a generalized Weyl

module Mκ := Ind
bgκbg+

κ
(M);

ii) Considering a finite dimensional irreducible G-representation Vλ (λ ∈ Λ+) as a G[[t]]-
module we call V κ

λ Weyl module.

2. Key properties of generalized Weyl modules

For the rest of the talk we make a crucial assumption:

Assumption 2. In what follows we always assume κ − κcrit is not a positive rational,
meaning that κ0 is non-degenerate and ci + 1/2 /∈ Q≥0, with ci defined via κi = ci · κKill,i.

The following Proposition from a previous talk summarizes basic properties of generalized
Weyl modules.

Proposition 1. a) Any generalized Weyl module has a finite filtration with consequent quotients
being Weyl modules;

b) Any generalized Weyl module has finite length;
c) Any Weyl module V κ

λ has a unique irreducible quotient Lκ
λ and Lκ

λ � Lκ
µ for λ 6= µ;

d) For a generalized Weyl module V the action of Sugawara operators L
(i)
0 induces a decompo-

sition into a countable direct sum of finite dimensional generalized eigenspaces V =
⊕

χ∈Cl+1
χV .

Remark 4. As can be observed during the proof, parts a),c),d) remain valid for any non-critical
level κ, while it’s only b) that requires our assumption on κ− κcrit to be non-positive rational.

Once our results are stated in the full generality for the case of reductive g, in the rest of this talk
we will assume g is simple in order to make our arguments shorter and more understandable. In
particular, there is only one Sugawara operator L0.

1In other words we pick a Sugawara operator L0 for each component gi.
2To pick such a basis we essentially need non-degeneracy of κi − κcrit,i. That’s why Sugawara Construction

fails at the critical level.
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Proof. Claim a) is trivial. Indeed, it is easy to see that any finite-dimensional G[[t]]-module M
possesses a filtration by ĝ+

κ -modules M = M0 ⊃ M1 ⊃ . . . ⊃ Mk = 0, s.t. tg[[t]] acts trivially
on every quotient Mi/Mi+1. Hence the representation of g[[t]] in Mi/Mi+1 factors through its
quotient g via evaluation map. Since any finite dimensional G-representation decomposes into
the sum of G-irreducible modules we can refine out filtration {Mi} in such a way that Mi/Mi+1

is irreducible as a G-module. This filtration is obviously finite since M is finite dimensional.
Thus we get the desired filtration Mκ = Mκ

0 ⊃ Mκ
1 ⊃ Mκ

2 ⊃ . . ..
Let us note that validity of d) for the Weyl modules together with finiteness statement of

part b) proves d) for any generalized Weyl module. Hence it suffices to prove d) for V κ
λ . Recall

the formula for a Sugawara operator L0 =
∑

j>0

∑
p (t−jcp)(tjcp) + K, where K =

∑
p cpcp is

a standard Casimir operator of g with respect to bilinear form −2(κ − κcrit). Since tg[t] acts
by 0 on any v ∈ Vλ ⊂ V κ

λ we get L0(v) = Kv = −1/2(κ − κcrit)−1(λ, λ + 2ρ)v. Let us denote
− 1

2 (κ − κcrit)−1(λ, λ + 2ρ) =: pκ(λ). Finally, using the equality [L0, t
kc] = ktkc we see that

L0((t−a1g1) . . . (t−akgk)v) = (pκ(λ)− (a1 + . . .+ak))v. Since the set {(t−a1g1) . . . (t−akgk)v|∀i :
ai > 0, gi ∈ g, v ∈ Vλ} spans V κ

λ we get the result (in this case we get a decomposition into
the direct sum of eigenspaces, while for a generalized Weyl module it’s essential to consider
generalized eigenspaces).

Remark 5. One corollary is that all the eigenvalues of L0 acting on V κ
λ start with pκ(λ) and

go down discretely. Moreover, this highest component pκ(λ)V
κ
λ
∼= Vλ as g-module.

Now we are ready to prove the first part of c). It suffices to show that any proper ĝκ–
submodule W ⊂ V κ

λ is contained in
⊕
n∈N

pκ(λ)−nV κ
λ (it would imply the uniqueness of the maximal

proper submodule and hence uniqueness of irreducible quotient). However, let us note that
W is L0–invariant and hence W =

⊕
χ

(W
⋂

χV κ
λ ). Since g-module pκ(λ)V

κ
λ
∼= Vλ is simple,

W
⋂

pκ(λ)V
κ
λ is either 0 or the whole pκ(λ)V

κ
λ . In the latter case W = V κ

λ as Vλ generates the
whole V κ

λ under the ĝκ-action. This contradicts our assumption on W to be proper and the
statement follows.

Let us now prove Lκ
λ(1) = Vλ, which in particular immediately implies Lκ

λ � Lκ
µ for λ 6= µ.

Inclusion Lκ
λ(1) ⊃ Vλ is obvious. Assume that Vλ 6= Lκ

λ(1). Since the action of g on Lκ
λ(1)

integrates to an action of group G there exists µ ∈ Λ+ and a monomorphism of G-modules
γ : Vµ → Lκ

λ(1), s.t. Im(γ)
⋂

Vλ = 0. Frobenius reciprocity provides a ĝκ-homomorphism
Υ : V κ

µ → Lκ
λ, whose restriction to Vµ ⊂ V κ

λ coincides with γ. Since Lκ
λ is irreducible, Υ

nonzero and V κ
µ has a unique irreducible quotient we get that Lκ

µ = Lκ
λ and Υ is the natural

homomorphism V κ
µ → Lκ

µ
∼= Lκ

λ. Since Im(γ)
⋂

Vλ = 0 we easily get Im(Υ)
⋂

Vλ = 0. Recalling
the eigenvalues appearing in a decomposition of part d) in the case of a Weyl module, we see
that pκ(λ)− pκ(µ) ∈ N, pκ(µ)− pκ(λ) ∈ Z≥0 providing a contradiction.

Finally, let’s handle b). Because of a) it suffices to show that any Weyl module V κ
λ has

finite length. Let us introduce the set S := {δ ∈ Λ+|pκ(λ) − pκ(δ) ∈ N}. This set is finite.3

Since all generalized eigenspaces of V κ
λ are finite dimensional it suffices to check that for any

ĝκ-submodules M2  M1  V κ
λ there exists δ ∈ S, s.t. (M1/M2) ∩ pκ(δ)V

κ
λ 6= 0. Indeed, this

would immediately imply that the length of V κ
λ is bounded from above by

∑
δ∈S dim(pκ(δ)V

κ
λ ).

As M1/M2 6= 0 and the set of generalized eigenvalues of L0 acting on M̃ := M1/M2 is discrete
and bounded from above (since it is so for the whole V κ

λ ) we can pick χ ∈ Λ, s.t. χM̃ 6= 0
and ∀ξ : ξM̃ 6= 0 inequality <(χ) ≥ <(ξ) holds (we use notation <(t) for the real part of

3Presenting κ in the form κ = c·κKill there are two possibilities: c+1/2 /∈ Q, and so S = {λ}, or c+1/2 ∈ Q<0

implying finiteness of S because of the positivity of bilinear form −1/2(κ− κcrit)
−1 and discreteness of Λ.
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t ∈ C). Then from the commutation relation [L0, tc] = tc, c ∈ g, we see that tg should act by
zero on χM̃ , because of the maximality of χ. Hence χM̃ ⊂ M̃(1). Pick a monomorphism of
G-modules φ : Vν → χM̃ ⊂ M̃(1) for some ν ∈ Λ+. By the Frobenius reciprocity we get a
g̃κ-homomorphism Φ : V κ

ν → M̃ . Then pκ(λ) − pκ(ν) ∈ N (it can’t be 0 since M1 6= V κ
λ ). So

ν ∈ S.

Remark 6. Plugging in the above proof M2 = 0 we get that if ∀µ ∈ Λ+ : pκ(λ) − pκ(µ) /∈ N
then V κ

λ is irreducible. In particular, V κ
0 is irreducible.

¤

3. Coinvariants

One of the key constructions in this seminar is a fusion product. Let us recall it.

Definition 6. a) For a finite subset S of P1 we denote by AS the ring of rational functions on
P1 regular outside S and write gout,S := g⊗C AS,

b) A coordinate system at S is a family Ψ = {φs}, φs : P̂1
s → D̂ of isomorphisms between

the completions of P̂1
s of P1 at s ∈ S with a formal disc D̂,

c) We denote by gκ,S the central extension 0 → C → gκ,S → ⊕
s∈S

g((t)) → 0, which is the

quotient of ⊕
s∈S

ĝκ by the kernel of the addition map ⊕
s∈S
C→ C.

Remark 7. A coordinate system Ψ defines an embedding βΨ : gout,S → ⊕
s∈S

g((t)). As an imme-

diate consequence of the sum of residues formula it lifts uniquely to a Lie algebra homomorphism
β̃Ψ : gout,S → gκ,S.

d) Given a family of ĝκ-modules {(ρs, Vs)}s∈S and a coordinate system Ψ at S we denote
by C({ρs}, Ψ) the space of coinvariants of ⊗

s∈S
Vs by the action of the Lie algebra β̃Ψ(gout,S).4

We have the following trivial Proposition:

Proposition 2. a) For any family of finite dimensional G[[t]]-modules {Ns}s∈S and a coordi-
nate system Ψ at S the space C({Nκ

s }, Ψ) is isomorphic to the space of coinvariants of ⊗
s∈S

Ns

under the diagonal action of g,
b) For any family of ĝκ-representations {(ρs, Vs)} which are quotients of the generalized

Weyl modules and a coordinate system Ψ at S, the space of coinvariants C({ρs},Ψ) is finite
dimensional.

Proof. a) Can be easily proved by induction, using the fact that given any principal parts fs at
the neighborhoods of s ∈ S there exists a meromorphic function f on P1 with poles only at S,
whose principal parts at these points are given by fs, and it is unique up to adding a constant;

b) Follows from part a) . ¤

Remark 8. We will see in the next section that the requirement for a ĝκ-module M to be a
quotient of a generalized Weyl module is equivalent to belong to category Oκ.

4Note that an action of ⊕
s∈S
bgκ on ⊗

s∈S
Vs factors through gκ,S and hence we get a gout,S-action on this module.
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4. Category Oκ

Now we define the basic object of this talk:

Definition 7. The full subcategory of KLκ consisting of finitely generated ĝκ-representations
is called the category Oκ.

Next proposition provides us with another equivalent definitions of category Oκ. In partic-
ular, we show it’s equivalent to the one from [3].

Proposition 3. The following properties of V ∈ KLκ are equivalent:
a) V admits a finite filtration with subquotients of the form Lκ

ν for various ν ∈ Λ+,
b) V is a quotient of a generalized Weyl module,
c) For some N the subspace V (N) is finite dimensional and ĝκ-generates V ,
d) V ∈ Oκ.

The following result is more nontrivial and supplies an intrinsic definition of the category
Oκ, which is generally easier to check.

Theorem 1. V ∈ KLκ is finitely generated iff dim V (1) < ∞.

Corollary 1. As the first application of Theorem 1 we immediately get that Oκ is an abelian
subcategory of KLκ, stable under subquotients.

Before moving to the proofs of these statements let us introduce a duality functor.

5. Duality functor D

One of the key features of category Oκ is existence of an anti-involution functor D : Oop
κ → Oκ.

In fact, we define this functor on a bigger category C, where it is obviously an anti-involution,
and then show that it preserves subcategory Oκ.

Remark 9. Since KLκ ⊂ ĝκ − mod the action of L0 on any V ∈ KLκ is well defined.5 We
claim that in fact it decomposes V into the direct sum of generalized L0–eigenspaces V = ⊕

χ∈C χV

(which are no longer finite dimensional). To prove this it suffices to show that for any v ∈ V
there is a non-zero polynomial P ∈ C[t], s.t. P (L0)v = 0. Existence of such P is guaranteed
once we can find a finite dimensional vector space W ⊂ V containing all Lk

0(v), k ≥ 0. One can
easily produce such W using smoothness and integrability of V .

Definition 8. Define C as a full subcategory of KLκ, consisting of those modules V , s.t. in the
decomposition V = ⊕

χ∈CχV into the generalized eigenspaces of L0:

i) dim χV < ∞ ∀χ ∈ C,
ii) The set S = {χ ∈ C : χV 6= 0} is bounded from above, i.e. there is a finite set χ1, . . . , χk,

s.t. S ⊂ ⋃
1≤j≤k

(χj − Z≥0).

Note that category C contains all generalized Weyl modules (see the proof of Proposition 1d)
and hence any quotient of those, which are exactly objects of category Oκ (see Proposition 3c).

We define functor D : Cop → C as follows. As a vector space D(V ) := ⊕
χ∈C

(χV )∗ ⊂ V ∗. Now

our task is to define ĝκ-action on this vector space, s.t. χ(D(V )) = (χV )∗. We have a natural
action of ĝκ on the dual module V ∗. However, it doesn’t preserve subspace D(V ). In order
to fix it, let us introduce an anti-involution ] of g̃κ by ] : 1 ½ 1, tnc ½ t−nc. While g̃κ acts

5We recall that in the case of a reductive g operator L0 =
P

i L
(i)
0 .
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naturally on V ∗ preserving D(V ), we also can compose it with ]. The point of considering this
twisted action of g̃κ is that it extends by continuity to an action of ĝκ.6 This defines the desired
functor D. Since all χV are finite dimensional we also have D(D(V )) = V for any V ∈ C.

Now we want to show that D preserves a full subcategory Oκ ⊂ C. Because of the definition
of Oκ provided by Proposition 3a it suffices to show that D(Lκ

λ) ∈ Oκ for any λ ∈ Λ+. This
follows from the following lemma:

Lemma 1. For any λ ∈ Λ+ we have D(Lκ
λ) = Lκ

λ̄
, where λ̄ is determined by (Vλ)∗ ∼=

G−mod
Vλ̄.

Proof. Since D(Lκ
λ) ∈ C and D◦D = Id we see that D(Lκ

λ) is irreducible. Moreover, generalized
eigenvalues of D(Lκ

λ) are bounded from above by pκ(λ). Similarly to the argument used in the
proof of Proposition 1b we construct a nonzero map Ψ : V κ

ν → D(Lκ
λ) for some ν ∈ Λ+.

Since D(Lκ
λ) is irreducible, Ψ nonzero and V κ

ν admits a unique simple quotient, we see that
D(Lκ

λ) ∼= Lκ
ν . Moreover, restricting to the action of g-modules we get an isomorphism of

g-modules Vν
∼=pκ(λ) (V κ

ν ) ∼=pκ(λ) (D(Lκ
λ)) ∼= Vλ implying D(Lκ

λ) ∼= Lκ
λ
. ¤

As already mentioned above this implies

Corollary 2. Anti-involution D preserves subcategory Oκ.

Now we will show that when restricted to category Oκ ⊂ C duality functor D can written in
another way, as it was presented in Kazhdan’s talk and in [3].

Lemma 2. For any V ∈ Oκ we have D(V ) ∼= ((((V ∗)|egκ
)])sm)int.

We denote the right hand side of this expression by D′(V ). Let us explain why it is a natural
object, besides its annoying definition. We wish to consider (V ∗)] as a ĝκ-module, but by the
reasons explained in the definition of D(V ) it can be viewed only as a g̃κ-module. However,
after taking the smooth part the corresponding g̃κ-submodule integrates to an action of ĝκ.

In the proof of this lemma, we will need the following result, which characterizes D′(V ) (and
hence, at the end of the day, D(V )) in an abstract way without this ugly formula. Moreover,
it is a starting point for Giorgia’s talk:

Proposition 4. Let S = {0,∞} ⊂ P1 and a coordinate system Ψ = (φ0, φ∞) be determined by
choosing coordinate z1

z2
at 0 and z2

z1
at ∞ (here (z1 : z2) are the standard coordinates on P1).

Then for any V, V ′ ∈ KLκ we have Hombgκ−mod(V ′, D′(V )) = C({V ′, V },Ψ)∗ as vector spaces.

Remark 10. In other words, D′(V ) is an object of category KLκ representing the functor
C({−, V }, Ψ)∗ from KLκ to VectC.

Proof. Since V ′ ∈ KLκ any homomorphism V ′ → (V ∗
|egκ

)] = (V ]
|egκ

)∗ automatically factors

through D′(V ). Hence, Hombgκ−mod(V ′, D(V )) = Homegκ−mod(V ′, (V ]
|egκ

)∗). The basic linear

algebra provides an isomorphism Homegκ−mod(V ′, (V ]
|egκ

)∗) ∼= Homegκ−mod(V ′⊗V ]
|egκ

,C). Finally,

Homegκ−mod(V ′ ⊗ V ]
|egκ

,C) = C({V ′, V }, Ψ)∗, finishing the proof. ¤

We finish this section with the proof of Lemma 2.

Proof. Since both D(V ) and D′(V ) when restricted to g̃κ can be viewed as submodules of
((V ∗)|egκ

)] it suffices to check D′(V ) = D(V ) as vector subspaces.
To prove D′(V ) ⊃ D(V ) we need to show (λV )∗ ⊂ (((V ∗)|egκ

)])sm for any λ, i.e. that there
exists N , s.t. QN ·(λV )∗ = 0. This is equivalent to Q

]
N ·V has zero projection on λV ⊂ V (where

6The reason being that the set S = {χ : χV 6= 0} is bounded from above and tkg : χV → χ+kV .
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Q
]
N is the image of QN under ]). This immediately follows from Oκ ⊂ C, any object of which

has only finite number of L0-eigenvalues, whose real part is bigger then any fixed number.
Now let us prove ”⊂”. We refer the reader to [3], 2.23, for a straightforward proof (the key

observation is that for any N there exists a finite set S ⊂ {λ : λV 6= 0}, s.t. Q
]
N · V ⊃ ⊕

µ/∈S
µV ).

Another approach (suggested by Dennis) is to use Proposition 4. The following claim can be
proved using techniques, which will be introduced in Andrei’s talk: given a g̃κ-homomorphism
φ : W ⊗ V → C (with a trivial module structure on the target and the one on the source
given by β̃Ψ(gout,0,∞)) we have φ|λW⊗µV = 0 unless λ = µ. This fact implies that given any
W ∈ KLκ and a ĝκ-homomorphism ψ : W → D′(V ) ⊂ V ∗ we should have ψ(λW ) ⊂ λV ∗ and
hence ψ : W → V ∗ factors through

⊕
λV ∗ implying D′(V ) ⊂ D(V ). ¤

6. Proof of Proposition 3

We start from the equivalence of b) and d). Since any generalized Weyl module is finitely
generated and lives in category KLκ the same holds for it’s quotients, proving b) ⇒ d). Vice-
verse, given a module V ∈ Oκ we can find a finite set S ∈ V , which generates V under
ĝκ-action. Since the action of g integrates to G and tg[[t]] acts locally nilpotently there exists a
finite dimensional G[[t]]-submodule M of V containing S. The natural homomorphism Mκ → V
is, in fact, an epimorphism as M generates V . This implies d) ⇒ b).

Let us show c) ⇒ b) now. It is easy to see that V (N) is a G[[t]]-module as (ta1g1) . . . (taN gN )
acts trivially on V (N) for any ai ∈ N, gi ∈ g. This provides a homomorphism of ĝκ-modules
Υ : (V (N))κ → V . Since V (N) generates V , homomorphism Υ is surjective.

In turn, implication b) ⇒ a) is obvious. Indeed, any generalized Weyl module is of finite
length by Proposition 1b). Moreover, its subsequent subquotients are irreducibles, whose set
of generalized eigenvalues is bounded from above. Then the argument used in the proof of
Lemma 1 shows that this irreducible module must be of the form Lκ

ν for some ν ∈ Λ+.
Finally, let us prove a) ⇒ c).
Possessing a finite filtration with quotients Lκ

ν , which are finitely generated, V is finitely
generated as well. Since V =

⋃
V (N) we can find a particular N , s.t. V (N) contains all these

generators. As V (N) generates V we only need to check dim V (N) < ∞. This follows from

Lemma 3. For any module V satisfying conditions of Proposition 3a, the subspace V (N) is
finite dimensional.

Proof. Since for any N we have an exact sequence 0 → V (1) → V (N) → HomC(g, V (N − 1))
of C-vector spaces with the last map defined by x ½ (c ½ (tc)x) and g is finite dimensional
it’s enough to prove that dim V (1) < ∞.

Note that given a short exact sequence 0 → V1 → V → V2 → 0 in the category KLκ we
have an exact sequence of C-vector spaces: 0 → V1(1) → V (1) → V2(1), reducing to the case
V = Lκ

λ. However, Lκ
λ(1) = Vλ by Proposition 1c and hence is finite dimensional.

7. Proof of Theorem 1

In this section we switch between equivalent definitions of the category Oκ from Proposition 3.
In particular, we use criteria that V ∈ Oκ iff it satisfies conditions of part a).

One direction in Theorem 1 is easy. Namely, if V ∈ Oκ then dimV (1) < ∞ by Lemma 3.
The other direction is more involved.

In the rest of the proof we are assuming that the level of κ−κcrit is rational and hence negative,
since the irrational case is easy to handle.

First we introduce the following filtration Ok
κ on Oκ.
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Definition 9. For a positive k ∈ R>0 we define
(a) A set F k = {λ ∈ Λ+ : pκ(λ) < k} (this set if finite as κ− κcrit is negative),
(b) A partial order ¹ on F k by saying µ ¹ ν if either µ = ν or pκ(µ) < pκ(ν),
(c) The full subcategory Ok

κ ⊂ Oκ, whose objects are exactly those modules V from category
Oκ with all composition factors being Lκ

λ, λ ∈ F k.

Step 1: Category Ok
κ is closed under extensions in the category Oκ;

Step 2: If V ∈ Ok
κ then D(V ) ∈ Ok

κ (use D(Lκ
λ) = Lκ

λ̄
and pκ(λ) = pκ(λ̄));

Step 3: Argument from the proof of Proposition 1b proves that if λ ∈ F k then V κ
λ ∈ Ok

κ;
Step 4: Assuming λ is a maximal element of F k for the order ¹, the canonical map πλ :

V κ
λ → Lκ

λ is a projective cover of Lκ
λ in the category Ok

κ.

Remark 11. We remind that the homomorphism π : P → X of A-modules is called a projective
cover of X if P is projective, π–epimorphism and for any A-submodule P0 ⊂ P the restricted
map π| : P0 → X is no longer an epimorphism.

Proof. First we prove that the restriction map Hombgκ−mod(V κ
λ , X) → HomG−mod(Vλ, pκ(λ)X)

is in fact a bijection for any X ∈ Ok
κ. For this it suffices to prove pκ(λ)X ⊂ X(1). If not,

pκ(λ)+1X 6= 0 contradicting X ∈ Ok
κ together with maximality of λ.

Now we easily derive the statement of Step 4. It is clear that any proper submodule V ′ ⊂ V κ
λ

doesn’t map surjectively onto Lκ
λ under the restriction of πλ. So we only need to check that

V κ
λ is projective in category Ok

κ, i.e. given any surjective homomorphism ρ : Y → X and a
homomorphism f : V κ

λ → X in category Ok
κ we need to provide a homomorphism f ′ : V κ

λ → Y ,
s.t. ρf ′ = f . However, since in the category of finite dimensional G-modules all objects are
projective and restriction ρr :pκ(λ) Y →pκ(λ) X is surjective there exists a G-homomorphism
h : Vλ →pκ(λ) Y s.t. ρrh = fr. Using the bijection established above this provides a ĝκ-
homomorphism f ′ : V κ

λ → Y , whose restriction to Vλ coincides with h. Since restrictions of
ρf ′, f : V κ

λ → X to Vλ are equal, the bijection statement applied once again implies ρf ′ = f . ¤

Step 5: For any λ ∈ Λ+ we have Hom(Lκ
λ, Lκ

λ) = C (Schur lemma).
Now a Key Step of the proof comes:
Step 6: We have Ext>0

KLκ
(V κ

λ , D(V κ
µ )) = 0 for any Weyl modules V κ

λ , V κ
µ (λ, µ ∈ F k).

Proof. Since (IndKLκ

G[[t]], ResG[[t]]
KLκ

) is a pair of adjoint functors between categories KLκ and G[[t]]-

mod and IndKLκ

G[[t]] is an exact functor the general result from homological algebra implies
ExtiKLκ

(Ind(M),W ) = ExtiG[[t]]−mod(M, W ).
In particular we get ExtiKLκ

(V κ
λ , D(V κ

µ )) = ExtiG[[t]]−mod(Vλ, D(V κ
µ )|G[[t]]

).

Now we claim that D(V κ
µ )|G[[t]]

= Coind
G[[t]]
G (Vµ̄).

Remark 12. Recall that co-induction is a right adjoint functor to restriction. In the case of
subalgebra B ⊂ A it is defined by CoindA

B(M) = HomB(A,M) for any B-module M .

In order to check D(V κ
µ )|G[[t]]

= Coind
G[[t]]
G (Vµ̄) it suffices to show

HomG[[t]]−mod(M, D(V κ
µ )|G[[t]]

) = HomG−mod(M,Vµ̄)

for any G[[t]]-module M . This follows from the following sequence of equalities:

HomG[[t]]−mod(M, D(V κ
µ )|G[[t]]

) = HomKLκ(IndKLκ

G[[t]](M), D(V κ
µ )) = C({IndKLκ

G[[t]](M), V κ
µ }, Ψ)∗

= ((M ⊗ Vµ)g)∗ = Homg−mod(M,Vµ̄) = HomG−mod(M,Vµ̄),
where we have used both Propositions 2 and 4, and integrability of g-action to G.
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Since the pair (ResG
G[[t]], Coind

G[[t]]
G ) is a pair of adjoint functor between categories G[[t]]-

mod and G-mod and Coind
G[[t]]
G is an exact functor we have ExtiG[[t]]−mod(Vλ, Coind

G[[t]]
G (Vµ̄)) =

ExtiG−mod(Vλ, Vµ̄). As there are no higher Ext-groups between finite dimensional representa-
tions of G we get the result. ¤
Remark 13. In fact, it suffices to know this vanishing condition for Ext1,2.

Now general yoga implies the following result (see [4]):

Claim 1. For any λ ∈ F k there is a projective object Pκ
λ ∈ Ok

κ, s.t.
a) We have dimHomOκ(Pκ

λ , Lκ
µ) = δλ,µ for any λ, µ ∈ F k;

b) Module Pκ
λ admits a finite filtration with quotients of the form V κ

µ (µ ∈ F k) (such filtration
is called standard) and the number of occurrences of V κ

µ equals to [V κ
µ : Lκ

λ] (where for V ∈
Oκ the notation [V : Lκ

λ] stands for the number of subquotients in a composition series of V
isomorphic to Lκ

λ).

We will present a sketch of the proof at the end of this section, but let us first deduce the
proof of Theorem 1. As an immediate corollary of the above claim we get:

Corollary 3. For any V ∈ Oκ and any λ ∈ Λ+ the following inequality holds: [V : Lκ
λ] ≤∑

µ [V κ
µ : Lκ

λ][V (1) : Vµ] (where [V (1) : Vµ] equals to dim Homg(Vµ, V (1)), or equivalently, the
multiplicity of Vµ in the composition series of V (1) as a g-module).

Proof. First we choose k, s.t. V ∈ Ok
κ. Since module Pκ

λ is projective in Ok
κ the function

dimHom(Pκ
λ ,−) is additive in Ok

κ. Hence

dimHomOκ(Pκ
λ , V ) =

∑
µ

dimHomOκ(Pκ
λ , Lκ

µ)[V : Lκ
µ] =

∑
µ

δλ,µ[V : Lκ
µ] = [V : Lκ

λ].

Also since for any short exact sequence of modules 0 → X1 → X → X2 → 0 in Ok
κ we have

dimHomOκ(X, V ) ≤ dimHomOκ(X1, V ) + dim HomOκ(X2, V ) the following inequality holds:

dimHomOκ(Pκ
λ , V ) ≤

∑
µ

[Pκ
λ : V κ

µ ] dimHomOκ(V κ
µ , V ) =

∑
µ

[V κ
µ : Lκ

λ] dim Homg−mod(Vµ, V (1))

finishing the proof. ¤

Now we are ready to prove the nontrivial part of Theorem 1.
First we note that for any module V ∈ KLκ there exists a filtration {V i} of V by finitely

generated submodules (i.e. V i ∈ Oκ), s.t. V =
⋃

n V n. Hence to show that V ∈ Oκ it suffices
to bound the length of any ĝκ-submodule W of V by some universal constant. This can be
easily performed applying previous Corollary. Namely for any submodule W its length l(W ) is
bounded by

l(W ) ≤
∑

λ,µ

[V κ
µ : Lκ

λ][W (1) : Vµ] ≤
∑

λ,µ

[V κ
µ : Lκ

λ][V (1) : Vµ].

Hence if dim V (1) < ∞ only finite number of µ give a nonzero input in [V (1) : Vµ] and for
each of them only finite number of λ satisfy [V κ

µ : Lκ
λ] 6= 0. This bounds l(W ) by a universal

constant as desired. ¤
Sketch of the proof of Claim 1 (see [1], section 4)
a) As turns out, it is easier to work with injective objects. So we will prove that for any

λ ∈ F k there exists an injective object Iκ
λ ∈ Ok

κ s.t. dim HomOκ(Lκ
µ, Iκ

λ ) = δλ,µ for any λ, µ ∈ F k

and Iκ
λ admits a co-standard filtration with quotients of the form D(V κ

µ ) (µ ∈ F k).
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Since KLκ is closed under filtered colimits, Lκ
λ

admits an injective hull Iκ
λ in category KLκ.

Our goal is to show that Iκ
λ admits a co-standard filtration. This can be proved similarly

to Proposition 4.13 [1] using an intrinsic characterization of modules admitting co-standard
filtrations:

Lemma 4. An object M ∈ Ok
κ admits a co-standard filtration iff Ext1,2

KLκ
(V κ

µ ,M) = 0 ∀µ ∈ F k.

Finally we set Pκ
λ := D(Iκ

λ ). Since D is an anti-automorphism of Ok
κ and D(Lκ

λ) = Lκ
λ

part
a) and existence of a standard filtration on Pκ

λ follow. It’s finiteness automatically follows from
the formula for multiplicities, obtained below.

b) In what follows we denote the number of these occurrences in subject by [Pκ
λ : V κ

µ ]. Then
we have the following sequence of equalities:

[Pκ
λ : V κ

µ ]
(1)
= dim HomOκ

(Pκ
λ , D(V κ

µ ))
(2)
= [D(V κ

µ ) : Lκ
λ]

(3)
= [V κ

µ : Lκ
λ].

Here (1) follows from the vanishing of higher Ext-groups from Step 6 and an equality

dimHom(V κ
ν , D(V κ

µ )) = dim C({V κ
ν , V κ

µ }, Ψ) = dim((Vν ⊗ Vµ)/g) = δν,µ

where we have used both Propositions 2, 4.
Equality (2) follows obviously from dim Hom(Pκ

λ , Lκ
µ) = δλ,µ and dim Hom(Pκ

λ ,−) being an
additive function.

Finally (3) follows from D(Lκ
λ) = Lκ

λ
and an equality [V κ

λ
: Lκ

µ] = [V κ
λ : Lκ

µ]. ¥
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